Se p 20 06 Hilbert modular forms and their applications Jan Hendrik
نویسنده
چکیده
1 Hilbert modular surfaces 3 1.1 The Hilbert modular group . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 The Baily-Borel compactification . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Siegel domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Hilbert modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Mk(Γ) is finite dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Eisenstein series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.1 Restriction to the diagonal . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.2 The example Q( √ 5) . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6 The L-function of a Hilbert modular form . . . . . . . . . . . . . . . . . . 21
منابع مشابه
Infinite Products in Number Theory and Geometry
We give an introduction to the theory of Borcherds products and to some number theoretic and geometric applications. In particular, we discuss how the theory can be used to study the geometry of Hilbert modular surfaces.
متن کاملTwo Applications of the Curve Lemma for Orthogonal Groups
Here H denotes the complex upper half plane and wτ the order of the stabilizer of τ in PSL2(Z). One purpose of this note is to give a generalization of this formula to modular forms on the orthogonal group O(2, p), which only depends on the Baily-Borel compactification of the arithmetic quotient in question. Moreover, we show that certain integrals, occurring in Arakelov intersection theory, as...
متن کاملThe Weil Representation and Hecke Operators for Vector Valued Modular Forms
We define Hecke operators on vector valued modular forms transforming with the Weil representation associated to a discriminant form. We describe the properties of the corresponding algebra of Hecke operators and study the action on modular forms.
متن کاملHilbert Modular Forms Modulo p: The Unramified Case
This paper is about Hilbert modular forms on certain Hilbert modular varieties associated with a totally real field L. Let p be unramified in L. We reduce to the inert case and consider modular forms modulo p. We study the ideal of modular forms with q-expansion equal to zero modulo p, find canonical elements in it, and obtain as a corollary the congruences for the values of the zeta function o...
متن کاملQuaternionic Manin symbols, Brandt matrices, and Hilbert modular forms
In this paper, we propose a generalization of the algorithm developed in [4]. Along the way, we also develop a theory of quaternionic M -symbols whose definition bears some resemblance with the classical M -symbols, except for their combinatorial nature. The theory gives a more efficient way to compute Hilbert modular forms over totally fields, especially quadratic fields, and we have illustrat...
متن کامل